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In ultra-low-field magnetic resonance imaging (ULF MRI), spin precession is detected typically in mag-
netic fields of the order of 10–100 lT. As in conventional high-field MRI, the spatial origin of the signals
can be encoded by superposing gradient fields on a homogeneous main field. However, because the main
field is weak, gradient field amplitudes become comparable to it. In this case, the concomitant gradients
forced by Maxwell’s equations cause the assumption of linearly varying field gradients to fail. Thus, image
reconstruction with Fourier transformation would produce severe image artifacts. We propose a direct
linear inversion (DLI) method to reconstruct images without limiting assumptions about the gradient
fields. We compare the quality of the images obtained using the proposed reconstruction method and
the Fourier reconstruction. With simulations, we show how the reconstruction errors of the methods
depend on the strengths of the concomitant gradients. The proposed approach produces nearly distor-
tion-free images even when the main field reaches zero.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, it has become attractive to perform magnetic
resonance imaging at ultra-low fields (ULF MRI). In ULF MRI, the
signals can be acquired, e.g. with superconducting quantum inter-
ference device (SQUID) sensors [1], atomic magnetometers [2], or
giant magnetoresistance (GMR) sensors [3,4]. The signal encoding
is achieved, e.g. as in conventional high-field MRI with gradient
fields that are added to a homogeneous magnetic field B0. How-
ever, because in ULF MRI the amplitude of B0 is orders of magni-
tude below that of the high-field strengths of a few tesla, the
amplitudes of the gradient fields tend to be of the same order or
even higher than B0.

Maxwell’s equations require that the curl and the divergence of
a static magnetic field vanish, i.e. when a magnetic field varies lin-
early in one direction, concomitant terms arise in the others. At
high fields, the strength of B0 makes it possible to treat the super-
posed gradients unidirectional, i.e. only the frequency of the pre-
cession changes while its axis remains constant within the field
of view (FOV). When the gradients are linear and unidirectional,
Fourier-transform-based reconstruction gives distortion-free
images. In this paper, the term linear gradient refers to a unidirec-
tional field whose amplitude varies linearly in one direction but re-
mains constant along the orthogonal directions.

At ultra-low fields, the weak B0 causes the assumption of linear
and unidirectional gradients to fail, leading to image artifacts in the
ll rights reserved.
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Fourier reconstruction [5–7]. The strength G of a gradient field can
be characterized by the parameter

e ¼ GL=B0; ð1Þ

where L is the diameter of the FOV. When e� 1, which is the case in
high-field MRI, Fourier reconstruction performs well. When the
amplitude of the homogeneous field decreases with respect to the
gradient fields, e approaches 1. At this stage, the collected data
differ from the sample’s Fourier transformation; thus, simple
Fourier reconstruction produces image artifacts. When e < 1, post-
processing methods can be used to correct those artifacts [8,9].
However, when e > 1, Fourier reconstruction needs support from
special sequences [10–13] to avoid artifacts in the final image.

In several applications, concomitant terms cause problems also
in high-field MRI. Therefore, there has been a need to develop
methods to either avoid or correct the artifacts. For example, in
phase-contrast MR, axial echo-planar imaging, and fast spin-echo
imaging, the effects of the concomitant terms can be corrected as
has been demonstrated experimentally [14–16]. Those methods
rely on slight pulse sequence modifications and improved recon-
struction algorithms. Also in ULF MRI, the effects of concomitant
gradients in standard Fourier reconstruction have been analyzed
mathematically by taking into account the lowest-order effects
[6–8]. Because the methods do not consider higher order devia-
tions, they are mainly limited to the regime e < 1.

In addition to post-processing methods, special imaging tech-
niques can be applied to overcome the problems related to the con-
comitant gradients. Rotating frame gradients, generated by driving
oscillating currents at the Larmor frequency simultaneously in two
gradient coils, can be used to substantially reduce distortions in the
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Fourier encoding at ULF MRI [12]. Also tailored pulse sequences
can be used to average out the effects of the concomitant gradients
[10,11,13]. These methods allow one to perform MRI at arbitrary
values of e; however, they need modified pulse sequences, which
limits their usability.

In this paper, we propose a general algebraic reconstruction
method to produce high-quality images even when the concomi-
tant gradients are extremely severe. The proposed method works
on any realizable imaging sequence so it can be directly applied
e.g. to standard gradient-echo imaging. Algebraic reconstruction
has previously been shown to be useful, e.g. in high-field MRI un-
der B0 inhomogeneity [17]. We describe MRI signals with a general
matrix equation for arbitrary magnetic fields and measurement
geometry. We show the power of our direct linear inversion (DLI)
formalism with ULF-MRI simulations and compare it with the com-
monly used Fourier reconstruction.

2. Theory

In the following, we derive a general matrix equation describing
the measured signals in MRI. The formulation allows one to recon-
struct images obtained with sequences containing arbitrary mag-
netic fields in any measurement geometry. With this formalism,
the assumption of linearly varying gradient fields underlying Fou-
rier reconstruction is no more necessary. Our notation assumes
that the magnetic fields arising from the spin precession are de-
tected directly, e.g. with SQUID sensors. However, an equivalent
formalism can also be written for inductive sensors that measure
the time-derivative of the field. In addition, we assume that no
RF pulses are used; instead, a prepolarizing field is used to initialize
the sample magnetization. Still, the present formalism can be eas-
ily modified to take into account possible RF pulses.

In MRI, the evolution of the magnetization m(r, t), where r is the
position and t is time, is described by the Bloch equations [18]. The
magnetization can be initialized with a polarizing magnetic field
Bp(r) and written as

mðr;0Þ ¼ BpðrÞ 1� exp½�Tp=T1ðr;BpðrÞÞ�
� �

qðrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q0 ðrÞ

¼ BpðrÞq0ðrÞ; ð2Þ

where Tp is the duration of the polarizing field, T1 is the longitudinal
relaxation time of the sample that may depend on the magnetic
field strength, and q(r) is proportional to the spin density under
investigation. In image reconstruction, our aim is to find q0(r).

After the polarization, m evolves in a magnetic field Bm(r, t) that
can consist e.g. of the homogeneous B0 and gradient fields. Assum-
ing that the orientation of Bm(r, t) is static and that Bm� Bp,

mðr; tÞ ¼ RTðr; tÞPðr; t;0ÞEðr; t;0ÞRðr; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tðr;tÞ

mðr;0Þ

þ qðrÞ
Z t

0

Bmðr; sÞ
T1ðr;Bmðr; sÞÞ

e
R s

t
ds

T1 ðr;Bm ðr; sÞÞds:

�Tðr; tÞmðr;0Þ; ð3Þ

where matrix R(r, t) rotates Bm(r, t)/Bm(r, t) to (0, 0, 1)T,

Pðr; t; t0Þ ¼
cos½hðr; t; t0Þ� sin½hðr; t; t0Þ� 0
� sin½hðr; t; t0Þ� cos½hðr; t; t0Þ� 0

0 0 1

2
64

3
75; ð4Þ

with

hðr; t; t0Þ ¼ c
Z t

t0
Bmðr; sÞds; ð5Þ

and
Eðr; t; t0Þ ¼
E11 0 0
0 E22 0
0 0 E33

2
64

3
75; ð6Þ

with elements

E11 ¼ E22 ¼ exp �
Z t

t0
1=T2ðr;Bmðr; sÞÞds

� �
; ð7Þ

and

E33 ¼ exp �
Z t

t0
1=T1ðr;Bmðr; sÞÞds

� �
; ð8Þ

are matrices describing the precession and the relaxation of the
magnetization, respectively, T2 is the transverse relaxation time,
and c is the gyromagnetic ratio. In Eq. (3), the second term represents
the magnetization in the Bm field; when Bm� Bp, as is normally in
ULF MRI, this term is small compared to the magnetization initial-
ized by the polarizing field and can be neglected.

When the orientation of Bm is time-dependent, the evolution of
m can be calculated step by step. In that case, T(r, t) in Eq. (3) is re-
placed with

Tðr; tÞ ¼ lim
n!1

dTnðr; t;nÞdTnðr; t;n� 1Þ � � �dTnðr; t;1Þ; ð9Þ

where

dTnðr; t; iÞ ¼ RT r;
i� 1

n
t

� �
P r;

i
n

t;
i� 1

n
t

� �

� E r;
i
n

t;
i� 1

n
t

� �
R r;

i� 1
n

t
� �

: ð10Þ

If the direction of Bm is piecewise constant, the number of terms in
the product of Eq. (9) may be reduced by extending the respective
time intervals.

When measuring with Ns sensors, the real-valued MRI signal of
the ith sensor in the laboratory frame may be expressed as

siðtÞ ¼
Z

AT
i ðrÞmðr; tÞdV ; ð11Þ

where Ai(r) is the sensitivity of the sensor at r; the integration is
performed over the source volume. Combining Eqs. (2), (3), and
(11), we get

siðtÞ ¼
Z

aiðr; tÞq0ðrÞdV ; ð12Þ

where the time- and position-dependent modified sensitivity of the
sensor is defined through

aiðr; tÞ ¼ AT
i ðrÞTðr; tÞBpðrÞ: ð13Þ

After expanding q0(r) in a chosen basis ffigNf
i¼1, i.e.

q0ðrÞ ¼
XNf

i¼1

aifiðrÞ; ð14Þ

with some unknown constants ai, and discretizing the time
(j = 1, . . . , Nt), we obtain

siðtjÞ ¼
Z

aiðr; tjÞ
XN f

k¼1

akfkðrÞdV ¼
XNf

k¼1

ak

Z
aiðr; tjÞfkðrÞdV|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cijk

¼
XNf

k¼1

akCijk: ð15Þ
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Eq. (15) may be written in vector-matrix form:

s1ðt1Þ
s2ðt1Þ

..

.

sNs ðt1Þ
s1ðt2Þ

..

.

sNs ðtNt Þ

2
66666666666664

3
77777777777775
¼

C111 C112 � � � C11Nf

C211 C212 � � � C21Nf

..

. ..
. . .

. ..
.

CNs11 CNs12 � � � CN s1Nf

C121 C122 � � � C12Nf

..

. ..
. . .

. ..
.

CNsNt1 CNsNt2 � � � CNsNtNf

2
66666666666664

3
77777777777775

a1

a2

..

.

aNf

2
66664

3
77775: ð16Þ

Thus,

s ¼ Ca; ð17Þ

where s is an NsNt-component vector, C is an NsNt � Nf matrix, and
a is an Nf-component vector.

We can further enlarge s and C by performing measurements
using several different magnetic fields Bm(r, t) and Bp(r), as in
the polarization encoding [19], and by combining the signals and
the sensitivity matrices of the trials:

s0 ¼

s1

s2

..

.

sNB

2
66664

3
77775; C0 ¼

C1

C2

..

.

CNB

2
66664

3
77775; ð18Þ
a

c

d

Fig. 1. (a) Simulated phantom, (b) homogeneous field, (c) gradient fields without the con
proportional to the field strengths. (‘‘A!” is a logo of the Aalto University.)
where the subscripts refer to the NB measurements utilizing various
magnetic fields. With the composite signal vector s0 and the com-
posite sensitivity matrix C0, we get

s0 ¼ C0a; ð19Þ

where s0 is an Ns0 -component vector and C0 is an Ns0 � Nf matrix
with

Ns0 ¼
XNB

i¼1

NsðiÞNtðiÞ: ð20Þ

After solving Eq. (19), we obtain an MR image in the chosen basis.

2.1. Solving the unknowns

In reality, signals contain also noise; thus, Eq. (19) obtains the
form

s0 ¼ C0aþ n; ð21Þ

where n is an Ns0-component noise vector. We can find a regularized
solution to Eq. (21) using singular value decomposition (SVD). For
example with truncated SVD, the propagation of the noise to the
solution can be attenuated and the solution becomes more stable
[20,21]. For large problems, the size of C0 may pose problems for
the computation of SVD. One way to reduce the computational
complexity while solving Eq. (21) is to use the conjugate gradient
method [22].
b

comitant terms, and (d) gradient fields with the concomitant terms. Arrow sizes are



Fig. 2. A schematic diagram of the sequence that we used for simulations. First a
polarizing pulse is applied in the x direction. Then, the homogeneous field B0 in the
z direction is turned on. Signal encoding is achieved with the gradient fields By and
Bz. The sequence is repeated with different values of Gy to collect the necessary
phase encoding lines.

Table 1
Truncation levels c for different values of e. When
solving Eq. (21) with truncated SVD, singular
values smaller than cw1, where w1 is the largest
singular value, were truncated to zero. The values
of c were optimized within 0.0025 precision for
each e.

e c
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Also, if we would have some prior knowledge of the sample to
be imaged, the image basis could be chosen wisely reducing the
number of unknowns and simplifying the problem. In some cases,
the common cube-shaped voxel basis may be beaten by a basis
representing the underlying sparsity of the sample. For example
an image atlas could be used to extract the principal components
of MR images; then, images could be reconstructed in the basis de-
fined by the most significant principal components, reducing the
number of unknowns [23].

The relaxation times in the matrices E(r, t, t0) are usually un-
known. If the assumed relaxation times are long in comparison
to the measurement time, E can be approximated by the identity
matrix. In fact, a similar assumption is normally present in Fourier
reconstruction where filtering can be used to correct for the signal
decay during a long sampling period. However, with the present
formalism the correction for the signal decay can be performed
in the most accurate way by applying different relaxation rates
for different voxels. In addition, prior information about the relax-
ation times could be used to provide more precise estimates of the
matrices E(r, t, t0) and to slightly improve image quality also with
short sampling periods. As with Fourier methods, also with the
proposed reconstruction method the sequence parameters can be
varied to obtain, e.g. T1, T2, or proton-density-weighted contrast
in the final image; if the sampling interval is kept short, relaxation
parameters in the forward model can be neglected.
0, 0.01, 0.1, 0.3, 0.5, 1 0.1
2 0.03
3 0.01
4, 8, 10, 16 0.0075
5 0.005
32 0.02
1 0.035

Fig. 3. Reconstruction errors as a function of e for Fourier reconstruction (FT) and
the proposed direct linear inversion method (DLI). Shown are means over 10
simulations; the respective standard deviations fall under the plot marks. At e = 32
and e =1, the error in the Fourier reconstruction is over 1.
3. Methods

We evaluated the proposed direct linear inversion (DLI) recon-
struction method against the Fourier reconstruction with ULF-MRI
simulations at several values of e in Eq. (1). We assumed that the
signals are detected with two orthogonal magnetometers having
homogeneous sensitivities along ex and ey. The simulated two-
dimensional water phantom with 41 � 41 voxels in the yz plane
with its center at the origin is illustrated in Fig. 1a. For the water,
we assumed relaxation times T1 = T2 = 2 s [24]. With cubic 1-mm3

voxels, the FOV was 4.1 cm in both the y and z dimensions.
We simulated a gradient echo sequence (Fig. 2). Before each

phase encoding, the sample was polarized in a homogeneous field
Bp = Bpex. After switching off Bp nonadiabatically, the simulation
assumed a weak homogeneous field B0 = B0ez (Fig. 1b). Phase and
frequency encoding in the y and z directions, respectively, were
simulated with gradient fields By and Bz:

By ¼ yGyez þ zGyey ð22Þ

and

Bz ¼ zGzez �
1
2

xGzex �
1
2

yGzey; ð23Þ

where Gy and Gz define the gradient strengths. Within the FOV, such
gradients can be achieved with cylindrically symmetric coils. The
first term in By and Bz is the desired linear gradient; the rest of
the formulas describe the concomitant gradients. The gradient
fields are illustrated in Fig. 1c and d. In our case, the second term
in Eq. (23) is zero because the phantom was set to the x = 0 plane.
In the k-space, we sampled 41 � 41 points in a regular cartesian
grid, although we realize that this may not be optimal in the case
of nonlinear gradients. The amplitude of the simulated frequency
encoding gradient was set to Gz = 200 lT/m; Gy was altered in
10 lT/m steps. The time to echo was 115 ms. We studied the recon-
struction quality at different levels of the concomitant terms by
altering B0 between 0 and 820 lT. In addition, we evaluated the
reconstruction quality in the absence of the concomitant terms,
i.e. e = 0.
Before the reconstruction, we added white Gaussian noise with
standard deviation r to the signals. The value of r was chosen such
that we obtained the signal-to-noise ratio (SNR) 10 for both sen-
sors at e = 0. We used the definition

SNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
jsðtÞj2dtR
r2dt

s
¼ 1

r

ffiffiffiffiffiffiffiffiffi
s0Ts0

Ns0

s
: ð24Þ

When reconstructing the image from Eq. (21), the basis functions fi

were chosen to represent the voxels of the image. We regularized
the reconstruction with truncated SVD; the truncation values as a
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function of e are listed in Table 1. In addition, we used values
T1 = T2 =1 in the matrices E(r, t, t0), because the relaxation times
were long in comparison to the encoding and acquisition times.
The reconstruction errors of the proposed method and Fourier
reconstruction were analyzed using the function

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNf
i¼1 q̂0ðriÞ � q0ðriÞ½ �2PNf

i¼1q0ðriÞ2

vuut ; ð25Þ

where q̂0ðrÞ is the obtained image estimate and Nf = 41 � 41 = 1681
is the number of voxels in the phantom.

4. Results

Fig. 3 shows the reconstruction error as a function of the char-
acteristic parameter e. In the plot, we show mean errors over 10
Fig. 4. Examples of the reconstructed images with Fourier reconstruction (left column) a
simulations for both the Fourier reconstruction and the proposed
DLI method. In Fig. 4, examples of the reconstructed images at
e = 1, e = 5, and e =1 are shown. In Fig. 5, we have plotted the sin-
gular values of the C0 matrices for several values of e.

As expected, Fourier reconstruction produces tolerable images
only when e� 1; the reconstruction error increases with e. In con-
trast, the proposed method applying SVD produces images with
small errors independently of e. Even at B0 = 0 lT, the reconstruc-
tion obtained from Eq. (21) with SVD is nearly distortion-free, only
the line with no precession is only partially reconstructed.

We note that when 3 6 e 6 16 even our method suffers from
some artifacts. Fig. 4 illustrates that those artifacts are highly local-
ized; in contrast, the Fourier reconstructed images show severe
geometric distortions. An explanation to the remaining artifacts
is that the magnetic fields of the gradient echo sequence at those
values of e are suboptimal; the signals do not contain enough
nd the proposed direct linear inversion method (right column) for three values of e.



Fig. 5. Singular values wi of the C0 matrices for different values of e. Vertical axis in
arbitrary units and same for every e.

218 J.O. Nieminen, R.J. Ilmoniemi / Journal of Magnetic Resonance 207 (2010) 213–219
information for perfect reconstruction. Fig. 3 shows that around
e = 2 the reconstruction error starts to increase rapidly. This
phenomenon seems to occur because at that regime there start
to exist regions with zero Larmor frequency. When 3 6 e 6 16,
the gradient echo sequence causes dephased signals from different
locations of the sample to mix. However, when e gets closer to 1,
certain kind of symmetry returns to the signals and nearly
distortion-free reconstruction becomes again possible. Fig. 5 also
shows that when 2 6 e 6 16, the largest singular values decrease
more rapidly than at e =1; in addition, the smallest singular
values are substantially smaller than the respective singular values
at e 6 2 but not much larger than those values at e =1. This
emphasizes that the encoding properties of the magnetic fields
with the studied sequence depend on the relative strength of the
concomitant terms. In addition, we found in separate simulations
that for lower SNR the shape of the reconstruction error curve in
Fig. 3 remains the same; only the overall error level increases a bit.

5. Discussion and conclusions

We have demonstrated that the problem of concomitant gradi-
ents can be overcome with a direct linear reconstruction method.
The proposed method fully utilizes the knowledge from the mea-
surement geometry and the applied sequence. With the increasing
computational power, it is no more necessary to limit oneself on
established Fourier-reconstruction-based methods. Instead, better
techniques can be applied to produce nearly distortion-free
images. For each measurement geometry and sequence, the matrix
C0 and its SVD have to be computed only once and saved; thereaf-
ter, images can be reconstructed with matrix multiplications.

With current post-processing methods, it is possible to remove
artifacts caused by concomitant gradients from Fourier recon-
structed images when the concomitant terms are moderate, i.e.
e < 1 [8]. Although tailored sequences have been shown to be able
to deal with arbitrary strong concomitant fields, the proposed
method further extends the range of MRI. The presented formalism
allows one to perform MRI with any kind of sequences and with
desired field strengths and to get the best possible reconstruction
quality, given the limitations of the sequence itself. For fixed B0

and fixed FOV, the imaging time is proportional to 1/e, when the
k-space is sampled conventionally. Thus, with the proposed meth-
od, imaging can be speeded up by increasing the gradient
strengths.

When B0 = 0, a center line of the sample produces zero fre-
quency signals; in practice, it is difficult to measure weak signals
near zero frequency because of the 1/f noise of SQUID sensors.
Depending on the gradient field strengths this may only affect
one line in the image given that the 1/f corner is low enough. How-
ever, for best image quality it may be necessary to acquire part of
the data by reversing the phase and frequency encoding dimen-
sions or with shifted zero frequency location. With that kind of
an approach, also the poorly reconstructed line in Fig. 4 at e =1
could become clearer.

In the simulations, we assumed sensors with homogeneous sen-
sitivity profiles over the sample. With a dense sensor array and
coils with localized sensitivity profiles, the reconstruction quality
at 3 < e 6 16 may increase substantially because signals of each
sensor would be picked from a localized region and less mixing be-
tween dephased sources would occur. In fact, with the presented
formalism, it is possible to design optimal sequences or coil arrays
for MRI. By studying the singular values of the C0 matrices for dif-
ferent magnetic fields and measurement geometries, conditions
providing superior image quality can be found.

We think the demonstrated reconstruction method will also
open new possibilities for device design. In the future, linear gradi-
ent fields may become unnecessary; coils for open geometries can
be produced freely without the need to produce certain field
shapes. As long as the coil geometry and the imaging sequence
are known, reconstruction matrices can be calculated. Image
reconstruction is obtained by solving the image equations.
Acknowledgments

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/
2007–2013) under Grant Agreement No. 200859.
References

[1] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, J. Clarke,
Microtesla MRI with a superconducting quantum interference device, Proc.
Natl. Acad. Sci. USA 101 (2004) 7857–7861.

[2] I.M. Savukov, V.S. Zotev, P.L. Volegov, M.A. Espy, A.N. Matlashov, J.J. Gomez,
R.H. Kraus Jr., MRI with an atomic magnetometer suitable for practical imaging
applications, J. Magn. Reson. 199 (2009) 188–191.

[3] M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr, Femtotesla, Magnetic field
measurement with magnetoresistive sensors, Science 304 (2004) 1648–1650.

[4] M. Pannetier-Lecoeur, C. Fermon, N. Biziere, J. Scola, A.L. Walliang, RF response
of superconducting-GMR mixed sensors, application to NQR, IEEE Trans. Appl.
Supercond. 17 (2007) 598–601.

[5] D.G. Norris, J.M.S. Hutchison, Concomitant magnetic field gradients and their
effect on imaging at low magnetic field strengths, Magn. Reson. Imaging 8
(1990) 33–37.

[6] D.A. Yablonskiy, A.L. Sukstanskii, J.J.H. Ackerman, Image artifacts in very low
magnetic field MRI: the role of concomitant gradients, J. Magn. Reson. 174
(2005) 279–286.

[7] P.L. Volegov, J.C. Mosher, M.A. Espy, R.H. Kraus Jr., On concomitant gradients in
low-field MRI, J. Magn. Reson. 175 (2005) 103–113.

[8] W. Myers, M. Mößle, J. Clarke, Correction of concomitant gradient artifacts in
experimental microtesla MRI, J. Magn. Reson. 177 (2005) 274–284.

[9] V.S. Zotev, P.L. Volegov, A.N. Matlashov, M.A. Espy, J.C. Mosher, R.H. Kraus Jr.,
Parallel MRI at microtesla fields, J. Magn. Reson. 192 (2008) 197–208.

[10] C.A. Meriles, D. Sakellariou, A.H. Trabesinger, V. Demas, A. Pines, Zero- to low-
field MRI with averaging of concomitant gradient fields, Proc. Natl. Acad. Sci.
USA 102 (2005) 1840–1842.

[11] C.A. Meriles, D. Sakellariou, A.H. Trabesinger, Theory of MRI in the presence of
zero to low magnetic fields and tensor imaging field gradients, J. Magn. Res.
182 (2006) 106–114.

[12] L.-S. Bouchard, Unidirectional magnetic-field gradients and geometric-phase
errors during Fourier encoding using orthogonal ac fields, Phys. Rev. B 74
(2006) 054103.

[13] N. Kelso, S.-K. Lee, L.-S. Bouchard, V. Demas, M. Mück, A. Pines, J. Clarke,
Distortion-free magnetic resonance imaging in the zero-field limit, J. Magn.
Reson. 200 (2009) 285–290.

[14] M.A. Bernstein, X.J. Zhou, J.A. Polzin, K.F. King, A. Ganin, N.J. Pelc, G.H. Glover,
Concomitant gradient terms in phase contrast MR: analysis and correction,
Magn. Reson. Med. 39 (1998) 300–308.

[15] X.J. Zhou, Y.P. Du, M.A. Bernstein, H.G. Reynolds, J.K. Maier, J.A. Polzin,
Concomitant magnetic-field-induced artifacts in axial echo planar imaging,
Magn. Reson. Med. 39 (1998) 596–605.



J.O. Nieminen, R.J. Ilmoniemi / Journal of Magnetic Resonance 207 (2010) 213–219 219
[16] X.J. Zhou, S.G. Tan, M.A. Bernstein, Artifacts induced by concomitant magnetic
field in fast spin-echo imaging, Magn. Reson. Med. 40 (1998) 582–591.

[17] Y.M. Kadah, X. Hu, Algebraic reconstruction for magnetic resonance imaging
under B0 inhomogeneity, IEEE Trans. Med. Imaging 17 (1998) 362–370.

[18] A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford,
1961.

[19] J.O. Nieminen, M. Burghoff, L. Trahms, R.J. Ilmoniemi, Polarization encoding as
a novel approach to MRI, J. Magn. Reson. 202 (2010) 211–216.

[20] R.J. Hanson, A numerical method for solving Fredholm integral equations of
the first kind using singular values, SIAM J. Numer. Anal. 8 (1971) 616–622.
[21] P.C. Hansen, The truncated SVD as a method for regularization, BIT 27 (1987)
534–553.

[22] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, third ed.,
Theory and Algorithms, John Wiley, New York, 2006.

[23] Y. Cao, D.N. Levin, Using an image database to constrain the acquisition and
reconstruction of MR images of the human head, IEEE Trans. Med. Imaging 14
(1995) 350–361.

[24] M. Burghoff, S. Hartwig, L. Trahms, Nuclear magnetic resonance in the
nanoTesla range, Appl. Phys. Lett. 87 (2005) 054103.


	Solving the problem of concomitant gradients in ultra-low-field MRI
	Introduction
	Theory
	Solving the unknowns

	Methods
	Results
	Discussion and conclusions
	Acknowledgments
	References


